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Abstract

The paper is to study the continuous time genetic regulatory networks to probe into the related issue of
system asymptotically stable, due to the system be existence of interval time-varying delays and norm-bounded
parameter uncertainty. Gene networks are being used increasingly as models to represent phenomena at the level
of gene expression, how to construct models for analyzing the interaction between genes from experimental data
is becoming important. In recent years researchers have proposed many methods to reconstruct gene regulatory
networks based on gene expression data, such as clustering, Boolean networks, linear and non-linear model,
Bayesian Networks and differential equation. For each gene category, we find its regulation patterns. By using
the regulation patterns found for each gene category, we can infer the gene regulation relationships by finding
the inclusive and opposite patterns between gene categories. Accordingly, these key genes can be admitted as the
centers, and the whole network can further be decomposed into smaller ones, according to these centers. Finally,
in order to optimize this decomposition, the boundaries among sub-networks can be determined, based on the
mutual-information among sub-networks. So must to use Lyapunov—Krasovskii function, and delay-dependent
stability is solved according to the skill of linear matrix inequalities. Simulation examples are to prove the
validity and applicability for suggested result

Keywords: Genetic regulatory networks, asymptotically stable, delay-dependent stability, linear matrix
inequality (LMI)

1. Introduction

A genetic regulatory network (GRN) is a nonlinear dynamical system which describes the highly complex
interactions between mRNAs and proteins-two main genetic products produced in the transcriptional and
translational processes. Genetic networks are biochemically dynamical systems, and it is natural to model
genetic networks by using dynamical system models, which provide a powerful tool for studying gene regulation
processes in living organisms. At present, GRN has become a new area of research in the fields of biological and
biomedical sciences. Stability behavior of genetic regulatory networks has important biological implication and
potential engineering application from both theoretical and experimental viewpoints [1, 2]. Therefore stability is
a basic feature of genetic regulatory process. Many researchers have studied so far the stability of genetic
regulatory networks by experiment, numerical simulation and theoretical analysis [2, 3, 5-8, 12-14].

On the other hand, there is no doubt that time delay play important role in dynamics of genetic networks,
and theoretical models without consideration of these factors may even provide wrong results. To have the
accurate results, time delay should be considered in the biological systems or artificial genetic networks due to
the slow processes of transcription, translation, and translocation or the finite switching speed of amplifiers.
However, the dynamics will be more complicated due to the incorporation of the time delay in the genetic
networks. Recently, some researchers have paid attention to the issue concerning time delay stability analysis
[5-8, 12-15]. In [5], the authors studied the stability of a general genetic network model with time delays by
using local stability analysis and characteristic equation analysis. Although the method of characteristic equation
analysis can provide an accurate local stability region, it is difficult to be verified, especially for large-scale
genetic networks with time delays. By local stability analysis and characteristic equation, the authors have
addressed the stability of a general GRNs model with time delays. In [7], the modelled GRNs with SUM
regulatory functions and have proposed some stability criteria for GRNs with time delays and/or stochastic
perturbations. In [8], the stability of GRNs with noise perturbations and time delays has been studied. The
criteria in [7, 8] are obtained by LMIs and can be easily verified. To have the accurate predictions, time delay
should be considered in the biological systems or artificial genetic networks due to the slow processes of
transcription, translation and translocation or the finite switching speed of amplifiers; theoretical models without
consideration delay may even provide wrong predictions [6, 12]. In [13], the authors investigated the robust
asymptotical stability issues of the GRNs with time delays and norm bounded uncertainties. By choosing an
appropriate new Lyapunov functional and employing some free-weighting matrices, [14] derived some less
conservative delay dependent stability criteria. Besides, the proposed method is particularly useful when applied
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to eukaryotic genetic networks. The numerical results show that the proposed criteria are valid, and are superior
to some results in the existing literature. Furthermore, as mentioned in [13, 14], all the theoretical results can be
used not only in the analysis and understanding of the biological mechanism of gene regulation in living
organisms; but can also be applied to the design and modelling of synthetic gene circuits in the framework of the
synthetic biology.Meanwhile, in the application and design of genetic networks, there are often some
unavoidable uncertainties, such as modeling errors, external perturbations and parameters fluctuations. These
uncertainties may cause the genetic networks unstable [15]. Thus, it is also of great importance to investigate the
robust asymptotical stability.

Based on the above discussion, the main purpose of this paper is to analyze the stability of genetic networks
in the forms of differential equations. The stability analysis of the genetic networks are based on the Lyapunov
method and integral inequality (LMI) approach, and the results are represented in terms of linear matrix
inequalities (LMIs), which are easy to be verified by convex optimization techniques, e.g., the interior point
method, and by software packages, e.g., the MATLAB LMI Toolbox. Numerical examples have also been used
to demonstrate the usefulness of the main result.

The rest of this paper is organized as follows. Preliminaries and assumptions are defined in section 2. In
section 3 the main results of this paper for the uncertain genetic regulatory networks is established. Three
examples are given in section 4 to show the effectiveness of the proposed method. Finally the paper is closed
with the interpretation and discussion of the results.

2. Model description and assumptions
The differential equations for genetic regulatory networks with time delay can be described as [5]

mi(t) =—aimi<t)+§bi(p,.(t—h»
p.(t) =—Ci p.(t) +d imi(t —T), [ =12,.,n

@)

where m;(t), p,(t) e R" are the concentrations of MRNA and protein of the ith node. In this network, there is

one output and multiple inputs for a single node or gene. The degradation rates of mMRNA and protein are
denoted by a;and ¢;, respectively. d; is a constant, and as a monotonic increasing or decreasing regulatory

function, we usually take p; as a Michaelis—-Menten or Hill form [7]. Here, we take
bi(p, (1), p,(t), .., pn(t)):ibij(pj(t)), which is called SUM logic [16]. Thus each transcription factor acts
j=1

additively to regulate the ith gene.
If transcription factor j is an activator of gene i, then

(p,)/ )"
bi(P ) =i — @)
1+(p,()/ B)
which is a positive feedback loop. Then the system may tend to settle in one of two stable states.
If transcription factor j is a repressor of gene i, then
1 (p,()/B)"
bi(p;(t) = =ai(l-— ) (3)

1+(p,)/ B)" 1+(p,)/ B)"

which is a negative feedback loop. Then the system may approach or oscillate around a single steady-state [1,
11], where H is a Hill coefficient, parameter £ is a positive constant and a bounded constant «; is the

dimensionless transcriptional rate of transcriptional factor j to gene i.
Hence, (1) can be rewritten as

mi(t) = —aim;(t) +§wijg (p,t=h)+B,
p,t) =—cip,t) +dimi(t-7), i=12,..,n

(4)

where g,(x) =(x/B)" I[1+(x/ B)"] is a monotonically increasing function, B, is defined as a basal rate,
Bi=2., oy and L; is a set of repressors of gene i. W =(w;) € R™ is a coupling matrix of the genetic
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regulatory networks, which is defined as
a;; 1T transcription factor j is activator of gene i
w; =4 0 ifthereisno link fromgenej to i 5)
—q;; if transcription factor j is repressor of gene i

In other words, the matrixW = (w;) defines the coupling topology, direction and the transcriptional rate of the

genetic regulatory network.
In compact matrix form, (4) can be rewritten as

m(t) =—-Am(t) +Wg(p(t—h)) + B, ®)
pt)=-Cp(t)+ Dm(t-7), i=12,...,n

where
m(t) =[m.(t), mo(t),. m@®O1", ) =[p,(t), p, @), ... p,OT, M(t—7) =[mi(t —7), mo(t —2),... mi(t =)',
g(p(t—h)) =[p,(t-h), p,(t-h),.. p,(t—h)]", A=diag(a,az .. an),C = diag(cy cz -, c.),
D =diag(dy,ds-.1d.), B=[Bu Bar-wes Bul-

It should be noted that, in model (4) and (6), B;is dependent on the biological function of transcription
factor jon gene i, that is, B; is determined by whether j acts as an activator or a repressor of gene i. Once gene
i has one or more repressors, then | ;, the set of all j which are repressors of gene i, is a non-empty set and B is

relevant to W. Thus, once W is uncertain, B is also uncertain. Therefore either for this case or when all
transcription factors are repressors of gene i, the variable equilibrium point is an unknown function about the
uncertainty, and these variable equilibrium points cannot be calculated because they are the solution of a
parameter-dependent non-linear system. As biological networks, genetic regulatory networks are usually
non-identical, so it is necessary to introduce estimation errors into the genetic network model, which makes the
mathematical model uncertain.

Let (m", p*) be an equilibrium of Eq. (6). Then we shift an intended equilibrium point to the origin by
letting x(t) =m(t) —m", y(t) = p(t)— p", Hence, it is easy to get:

X(t) = —Ax(t) +WF (y(t—h)) @)
y(t) = —Cy(t) + Dx(t—17)
where  X(t) =[xu(t), xo(t), ..., x. (O, y(t) =[y, (), y,@),..., y, (O,
Fly®) =L (y.0), (Y, O)-.. Ty, O], Fy®) =9(y®)+p)-9(p).
Since g, isa monotonically increasing function with saturation, it satisfies, for all x,y e Rwith x=y:
X-y
From the relationship between f(-) and g(-), we know that f () satisfies the sector condition:
Oswski, f.(0)=0,vx=0,i=12,..,n, 9)
X
which is equivalent to the following one:
f.0(f,(x)-kx)<0, f,(0)=0vx=0,i=12,..,n (10)

Next, we consider the following genetic regulatory network of N time-coupled non-identical nodes with
parameter uncertainties.

{X(t) =—(A+AA[D)X(D) + (W + AW (1)) f (y(t-h)) (11)

y(t) =—~(C+AC(1)y(t) + (D +AD1)x(t -7),
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where AA(t) , AW(t), AC(t), and AD(t) are unknown matrices representing time-varying parameter
uncertainties, which are assumed to be of the form

[AA(t) AW() AC(t) AD(t)]=MF(K)IN: N: N: N.l, (12)

where M,N, N, Ns and N,are known real constant matrices and F(t) is an unknown matrix function with
Lebesgue- measurable elements bounded by

FIOF®<I, v, (13)

where | is an appropriately dimensioned identity matrix.
The following lemmas will be used to prove the main results:

Lemma 1 [9, 10]. For any positive semi-definite matrices

Xu X Xis
X=X Iz X Xzul|2 O! (143-)
Xis Xz X

the following integral inequality holds

[ X' (8) X sX(s)ds <
Xu X Xu X(t)
Jo[X'® XE=h®) K] XEh Xz Xal|[x(t-h() |ds (14b)
Xk Xk O X(s)
Lemma 2 [4]. The following matrix inequality

S
Q) S0 g (15)
ST(x) R(x)
where Q(x) =Q'(x),R(x) = R"(x) and S(x) depend affine on X, is equivalent to
R(x)< @ (15b)
Q(x) <0, (15¢)
and
Q(X) =S(X)R™(X)S™(x) <0. (15d)
Finally, the following Lemma 3 will be used to handle the parametrical perturbation.
Lemma 3 [4].Given symmetric matricesQ and D, E of appropriate dimensions,
QDR Y EE'F (D' < (16a)
forall F(t) satisfying F'(t)F(t) <, ifand only if there exists some &>0 such that
Q+eDD"+¢'E'E <0, (16b)

3. Main results
In this section, we use the integral inequality approach (I1A) to obtain stability criterion for a genetic
regulatory networks with time delay (7). Based on the Lyapunov-Krasovskii stability theorem and integral
inequality approach (I11A), the following result is obtained.



Theorem 1. For given positive scalars h and 7,the genetic regulatory networks with time delay (7) is
asymptotically stable if there exist symmetry positive-definite matrices Q,=Q; >0,R, =R/ >0,(i =1,2,3),
Xu X X
U=y">0, diagonal matrices S>0, A0, A,>0, and X=X Xu Xxul|=0
Xis Xz Xa
Yir Y 12Y s
Y=|Yi, Y ,.Y |=0,such thatthe following LMIs hold for
Yis Y25 Jas
Q. 0 Qs Qu 0 0 @ 0]
0 Q» Qs 0 Qs Qx 0 Q
Qs Qx Qs 0 Qs 0 0 Qg

Q= Qu 00 Q. 0 Q¢ Qu 0O <0, (17a)
0 Q% Qs 0 Qs 0 0 0
0 O 0 Qi 0 Qs O O
Q. 0 0 i, O 0 o, O
10 Q% Q 0 0 0 0 Q)
and
Q3_ X2 0, (17b)
Rs—Y2>0, (17¢)
where

K =diag{ks ke kn, Qu=-QA-A'Q,+Q,+ 7 X 1+ X5+ X1z
Qu=TX~ Xu+ Xm=QW,Q,=7A'Q,,
Q»=-RC-C'Ri+R:+NYu+Y1u+Y 1 Qn=RD,Qx=KA,-C’'S,
Q=Y =Xu+Y 2 Qx=hC'RuQu=-0Q,+7X 2~ X2~ XuQs=D'S,
Qs =—hD"RsQu="U —2A5 Qs = KA»Qu=—TW'Q, Qs =U - 24,
Qe =NY =Y 2%—Y%—R2Qn=-7Q,Qs=-hRx

Proof: Choose the following Lyapunov-Kravoskii functional candidate to be

V(1) =V.i(1) +V (1) +V (1) +V.(1), (18)
where

Vi) = x" QX + Yy (DRY().
V) =25 f ()ds+ L, FT(YUF (y(s)ds,

V() = [, X (5)Qx(s)ds + [, Y (S)R.y(s)ds,

V(0 =", % (5)Qx(s)dsd @+ [,y (S)R.y(s)dsd 6.
Then, taking the time derivative of V(t) with respectto t along the system (18) yield

V(t) ZV1(t) +V 2(t) +V 3(t) +V 4(t)! (19)
where

Vi(x) = 2x" (DQX(1) +2y' OR.Y (1)
= 2" ()Q,[-AX() +WI (y(t — )]+ 2y () R[-Cy(t) + Dx(t - 7)] (20)

V() =2 "(y()Sy(®) + £ (y(E)UF (y(0) - f " (y(t = hE))UF (y(t - h(t)))
<2g"(y(0)S[-Cy(t) + Dx(t - 7)1+ f " (x())UF (x(1))
— 1 (y(t=h@))UF (y(t-h(v))), (21)



Vo) = X (0OQX(1) — X" (t—2)QX(t —7) +y (DR (1) — y (t—h)R.y(t —h)

and
V(1) = X" 7QX(1) — I, X (5)QX(s)ds + y ' ()hR=y (1) — [, Y (S)R=y(s)ds

= X" (O7QX(®) + Y ONRY(®) — [, X" (S)(Q,— X ) X(s)ds — [, Y'(S)(Rs— Y ) Y()dls

—[L XT(S) X sX(s)ds — [, V' (S)Y w¥(S)ds

Using Lemma 1, the term  —[._x"(S) X =X(s)ds can be written that

—[ X"(8) X sX(s)ds
Xu X Xl X()
<JL X x'(t-1) xT(S)]{xL X 2 anX(tr)}ds
Xts Xz 0 || X(s)

< XT(0)7 XX () + X (D)7 X X (t—7) + X" (1) X 1, X(3)dS

X (t=7) X IX() + X (= 7) T X X (t = 7) + X (E = 7) X ] X(s)dS
+[L X (8)ds X Ix(t) + [, X" (s)ds X Tx(t - 7)

=X (O X+ X+ X)X + X O[T X 22— Xia+ X ]X(t—7)

X (=) e X L= X L+ X X)) + X"t = 7)[7X 22— X 25— X 2]X(t = 7).

Similarly, we have

_L‘—h yT(S)Y 33)'/(S)dS

<Y OMY Y L+Y L]y +y O)NNY o =Y +Y L]yt -h)

+y (t =Y L =Y E+Y 2]y (®) + Y = h)IY 2~ Y =Y L]yt —h).
Evaluating x"(t)zQx(t)+y'(t)hR.y(t) along solution to (7), gives as follows:

X' (t)7QX(t) + Y (HhR.Y(1)
= [ AX(t) +WF (y(t — )T (zQ ) [-Ax(t) +WF (y(t—h))]
+[-Cy(t) + Dx(t — 7)]" (hR4)[-Cy(t) + Dx(t —7)]

From (10) for appropriately dimensioned diagonal matrices A;(i =1, 2), we have

276 €N T W te))Ky ¥

and
—2f"(y(t—h)ALf (y(t—h))—Ky(t—h)]>0.

Substituting the above equations (20)-(28) into (19), we obtain

V() < EOES0) - X (5)(Q,— Xs)X(8)ds = [, ¥ (S)(Rs =Y ) V($)ds,

where &' () =[x'(1) ') x'(t-7) f(y-h) f(y@®) y'-h)] and

Ell O ElS El4 O O
Ex Bxs 0 Zx Ex
=l B Ha Ha 5 0
13 23 3 3 35 .
== “T = “T - = <0, with
Ze 0 By Eu 0 Hs
T T
0 EZS E35 O ESS 0
—T —T _
L 0 =26 0 a6 0 66 |

(22)

(23)

(24)

(25)

(26)

@7)

(28)

(29)



K =diag{kskz - kb 5= —QA-A'Q,+Q,+ X1+ X+ X L +TA'Q,A,
Eu=TXe—XutXmEu=QW-7A'QW,
»=—RC-C'Ri+R:+hYu+Y,+YL+hC'RL,
5=RiD—hC'R:D,Es=KA,—C'S,Zss =Y 1, — Xss+Y 3,
2=—Q,+TX %~ Xu—Xz+hD'RD,Z5=D'S,
Hau=U-2A,+W'QW, 5 =KA»Es=U —2A, 5 =Y - Y 5 —Y % — R

[x1 [t [1]

Finally, using the Schur complements of Lemma 2, with some effort we can show that (29) guarantees of
\/'(t)<—5||x(t)||2 for a sufficiently small §>0. It is clear that if 2<0, Q,—X5>0, and R;—Y5>0.
Furthermore, (17) implies © <0, which is equivalent to (29). Therefore, if LMIs (17) are feasible, the system

(7) is asymptotically stable. This completes the proof. [J
Based on Theorem 1, we have the following result for uncertain genetic regulatory network with time delay
(12).

Theorem 2. For given positive scalars h and z, the genetic regulatory networks with time delay (11) is
asymptotically stable if there exist symmetry positive-definite matrices Q,=Q; >0,R,=R] >0,(i =1,2,3),
X11 XlZ X13
U=uU">0, diagonal matrices S >0, A20, A,20,6>0, and X =|XL X» Xuxl|=0,
Xis Xz X
Y11 Y 12Y 13
Y=|Yi, Y 2.Y |=0,such thatthe following LMIs hold for
Yis Y'25Y s

On 0 Qw Qu 0 0 O 0 Qp Quw 0 0]
0 Qn Qx 0 Qx Qs 0 Qi

0
QO Ok Qs 0 Qs O 0 Qs O 0 0 0
Q. 0 0 Q. 0 Qs Qs O 0 0 0 0
0 Qs Qs 0 Qs 0 0 0 0 0 Qwm Qu
oo 0 0O 0 0% 0 0, O 0 0 0 0 0 <0 (300)
Q. 0 0 Qs 0 0 Qr 0 Qw Quw O 0
0 Qx Qs 0 0 0 0 Qs 0 0 Qu Quw
o, 0 0 0 0 0 QL 0 Q. O 0 0
Q. O 0 o0 0 0 O O 0 Quo O 0
0 Om O 0 0 O 0 Qwm O 0 Quun O
|0 Qw 0 0 Qi O 0 Qi O 0 0 Quw|
and
Q,— X x>0, (30b)
R:—Yx%=0, (30c)
where

Qu=QuteiNINy Q= Q2+ esNiN3 Qs = Qut eaNiNw Q= Qua+ £2N2N 2 Quo = QM 1, Quio = Q,M 2,
Qo = RiM 5 Q212 = RiM 4, Q11 = SM 3, Q11 = SM 4, Qe = _TQ3M 1 Q70 = _TQ3M 2 Qe =—NR3sM 3,
Qez = —hRsM 4 Qoo = —g1l, Quowo = —&2l , Quun = —g3l , Quao = —&.l. Qij:(i: J =1...8li< J <8) are defined in (17).

It is, incidentally, worth noting that the uncertain genetic regulatory network with time (11) is asymptotically
stable, that is, the uncertain parts of the nominal system can be tolerated within allowable time delay h .

Proof: Replacing AW,C, and D in (17) with A+MFOMW+MFEN,, C+MF(EH)N, and
D+M.F(t)N,, respectively, we apply Lemma 2 for system (17) is equivalent to the following condition:
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Q+ Ty F ()M + TRF O+ 20F ()T 26 + ToF (050 + TaoF () Tse + T3F ()T 30+ T aaF ()i + ThF (D174 <0
(31)
where
Fm:[QlMl 0 0000 —zQ,M,; OJT,FR:[—NI 00 0O0TO00O 0]'
r.=[QM. 0 0 0 0 0 —rQM, 0] ,T.=[0 0 O N, O 0 0 0],
r«=[0 RM: 0 0 SMs; 0 0 —hR:M] ,[%=[0 0 N, 0 0 0 0 0],

r«=[0 RM. 0 0 SM, 0 0 -hRM.]'.T%=[0 O N, 0 O 0 0 0.

According to Lemma 3, (31) is true if there exist a scalar g; > 0(i =1,2,3,4) such that the following
inequality holds

Q+ &1 Tl is + el telie + &2 Toalsa + €2l 5l 20+ &5 T3al 5 + £l 3l a0+ &4 Taalho + g4l kel a0 < 0. (32)

Applying the Schur complement shows that (32) is equivalent to (30a). This completes the proof.
Base on that, a convex optimization problem is formulated to find the bound on the allowable delay time
hand z which maintains the genetic regulatory network time delay with parameter uncertainties systems (11).

Remark 2. It is interesting to note that hand ¢ appear linearly in (17) and (30). Thus a generalized eigenvalue
problem (GEVP) as defined in Boyd, et al. [4] can be formulated to solve the minimum acceptable
1/h (or 1/7) and therefore the maximum h (or 7) to maintain robust stability as judged by these conditions.

In this way, our optimization problem becomes a standard generalized eigrnvalue problem, then which can be
solved using GEVP technique. From this discussion, we have the following Remark 2.

Remark 2: Theorem 2 provides delay-dependent robust asymptotic stability criterion for the genetic regulatory
network time delay with parameter uncertainties systems (11) in terms of solvability of LMIs [4]. Based on them,

we can obtain the maximum allowable delay bound (MADB) h(or z) such that (11) is stable by solving the
following convex optimization problem

Maximize ﬁ(or ; )
Subject to (30) (33)

Inequality (33) is a convex optimization problem and can be obtained efficiently using the MATLAB LMI
Toolbox.

4. Examples
Example 1: Consider an uncertain genetic regulatory network (11) with the following parameters

{X(t) =—(A+AA[D)X(®) + W + AW (1)) f (y(t-h)) (34)

y(t) =—(C+AC(1))y(t) + (D +AD(t))x(t - 7),
where

A=diag(1,1,1),C = diag(L,1,1), D = diag(0.3,0.2,0.4), K = diag(0.65,0.65,0.65),

0 -1 -1 004 001 -0.02 02 0 0

W=-1 0 0|M,=|001l 004 -001|,M,=|0 02 0 |
0 1 0 -0.02 -0.01 0.3 0O 0 02
04 01 -0.2 0.040 0.02 -0.04

Ms=| 0.1 04 -01|,M.=| 0020 0.03 -0.02|,N.=MuN,=diag(0.2,0.2,0.2),
02 -01 03 -0.040 -0.02 0.06

Ns=MsNs=M,B=[2 1 0] ,AB=[0.08 0.04 0],
F.(t) = diag(sin(t), cos(2t), —sin(t)), F 5(t) = diag(—0.01sin(t),—0.01cos(2t),—0.01sin(t)),
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2

F.0)=F.t)=1,f(X) :%, that is, the Hill coefficient is 2. It is obvious that the derivative of f(x) is less
+X

than 0.65, and assumption (9) is satisfied.

Solution: Using Theorem 2, the MADB 7 and h for the system (34) to be asymptotically stable are
7 =5.8895,and h =6.4654. Applying the criterion in [13], the system is asymptotically stable for r and h
that satisfies 7=0.2andh=0.3, respectively. Hence, for this example, the criteria proposed here significantly

improve the estimate of the stability limit compared for the result of [13].In case of 7 =5.8895, h = 6.4654, by

using the MATLAB LMI toolbox, we can easily obtain the following feasible solutions of LMIs (30) in terms of
Theorem 2.

[24.1477 0.4063 7.3111 18.0469 0.4554 6.5921 3.1722 0.0414 0.0439
Q,=| 0.4063 25.9010 -0.1794|,Q,=| 0.4554 18.5387 1.5321|,Q,=|0.0414 3.1751 -0.4772]|,
| 7.3111 -0.1794 35.2756 6.5921 1.5321 29.5817 0.0439 -0.4772 3.3921
[29.1748 -1.2044 4.2439 5.5993 -1.0400 2.1852 2.4865 0.0030 0.4955
R,=|-1.2044 36.0465 1.0496 |,R,=|-1.0400 7.7781 0.8754|,R,=|0.0030 3.8168 0.1010 |,
| 42439 1.0496 28.5873 2.1852 0.8754 6.0608 0.4955 0.1010 2.3132
0.8000 0.0285 0.6659 ] -0.0727 0.0001 0.0212 ] -0.2771 -0.0075 0.0185
X1, =|0.0285 0.9915 0.1126|,X,=| 0.0185 -0.0661 0.0115 |, X ,=|-0.0060 -0.2648 0.0452 |,
0.6659 0.1126 1.5381| -0.0017 -0.0115 -0.0624 | 0.0183 0.0442 -0.2742
0.6849 0.0034 0.4510 0.2792 0.0078 -0.0150 | 1.7163 0.0378 -0.0386
X »=|0.0034 0.9369 0.0604 |, X 5=| 0.0061 0.2657 -0.0449 |, X ;;=| 0.0378 1.6597 -0.2699 |,
0.4510 0.0604 1.1611| -0.0141 -0.0439 0.2810 | -0.0386 -0.2699 1.7803
1.4205 -0.3446 0.7114] -0.0661 0.0012 -0.0120 -0.2611 -0.0108 -0.0411
Yu,=|-0.3446 21812 0.2834|Y,,=| 0.0006 -0.1028 -0.0027 |,y =|-0.0066 -0.3901 -0.0081|,
0.7114 0.2834 1.5612 | -0.0135 -0.0040 -0.0611 -0.0392 -0.0038 -0.2370
0.0652 -0.0001 0.0134 0.2884 0.0016 0.0578 1.8715 0.0101 0.3758
Y, =|-0.0001 0.0998 0.0024 |y, =|0.0016 0.4502 0.0133|,ys=|0.0101 2.9252 0.0870 |,
0.0134 0.0024 0.0606 0.0578 0.0134 0.2651 0.3758 0.0870 1.7202
34.0247 -2.1175 3.2784 19.3547 0 0 25.8591 0 0
U =|-2.1175 51.8903 9.0948|,S = 0 25.0042 0,A:= 0 36.5520 01,
3.2784 9.0948 33.9774 0 0 20.942 0 0 27.0943
1.1653 0 0
A= 0 15273 01,£,=16.1286,£,=19.0746,¢, = 23.9381,¢,=16.3011.
0 0 1.1798

Example 2: In this example, we consider a five-node genetic regulatory network in order to show how to test
our theoretical results in detail. In Fig. 1, each ellipse represents a node, and the lines represent regulatory links,

in which T denotes activation. According to the definition of links in Section 2, we can obtain the coupling
matrix of this genetic regulatory network as follows

(35)

X() = ~(A+AAD)X(®) + W + AW (1)) f (y(t —h))
y(t) = —(C+AC(1))y(t) + (D +AD()X(t - 7),

where
A=diag(3,4,5,4,4),C =diag(5,4,5,4.5,4), D = diag(0.3,0.2,0.4,0.2,0.2),
K =diag(0.65,0.65,0.65,0.65,0.65),
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1
0
0
0
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01 04 -01

=/-02 -01 03

01 01 01
|01 02 0

0.1

M=

04 01 -02 -01 0.1]

01 02
01 0
04 01

0.4 |

0.04 0.01 -0.02
0.01 0.04 -0.01

-0.02
-0.01

-0.01 0.03
0.01 0.01

0.01 0.02 0

[ 0.04
0.02
M .=|-0.04
-0.02
| 0.02

001 0.01]
0.01 0.02
001 0
0.04 001
0.01 0.04]

0.02 -0.04 -0.02 0.02 |
0.03 -0.02 0.02 0.04
-0.02 006 002 0 |,
0.02 0.02 0.02 0.02
004 0 0.02 0.02 ]

[0 02 020 0 |
02 0 0 0202
\M,={0 02 0 0 0 |

0

02 020 0 O

0 O

02 0

N:.=MuN,=diag(0.2,0.2,0.2,0.2,0.2),N;= M N.= M B =0, F,(t) = diag(sin(t), cos(2t), cos(t), cos(t?), —sin(t)),
F(t) = diag(-0.01sin(t),—0.01cos(2t),—0.01cos(t),—0.01cos(t) / 2,—0.01sin(t)),

2

F.®)=F.t)=1,f(X) :%,that is, the Hill coefficient is 2. It is obvious that the derivative of f(x) is less
+X

than 0.65, and assumption (9) is satisfied.

Solution: The MADB 7 and h that guarantee the system (35) to be asymptotically stable are calculated to be
r=2,h=3 in [13], which is 7=4.6665, h="5.5435 by using Theorem 2 in this paper. It is seen that our
In case of r=4.6665, h=5.5435, solving Theorem 2 vyields the

results improve the existing results [13].
following set of feasible solutions

Q.=

R.=

Xu=

[ 1.5001 -0.0105

-0.0105 1.4413
-0.0727 0.0094
-0.1414 -0.0675
-0.0166 -0.1032

0.0737 -0.0028
-0.0028 0.0618
0.0006 0.0005
-0.0037 0.0012
-0.0024 0.0003

1.2730 -0.0054
-0.0054 1.2607
0.0076 0.0052
0.0035 -0.0044
-0.0040 -0.0099
[0.4503 0.0240
0.0240 0.6672
-0.0943 0.0085
-0.1173 -0.1083
| 0.0085 -0.1544
[-0.0053 0.0003
0.0004 -0.0034

=[-0.0005 0.0000

-0.0005 -0.0006
| 0.0002 -0.0008

-0.0727
0.0094
1.5978
-0.0523
0.0062

0.0006
0.0005
0.0506
0.0010
-0.0001

0.0076
0.0052
1.2604
-0.0045
0.0023

-0.0943
0.0085
1.2161
-0.1033
0.0128

-0.0004
0.0000

-0.0006
-0.0005
0.0001

-0.1414
-0.0675
-0.0523
1.5754
0.0008

-0.0037
0.0012
0.0010
0.0654
-0.0019

0.0035
-0.0044
-0.0045

1.2841
-0.0039

-0.1173
-0.1083
-0.1033

0.8161
0.0308
-0.0003
-0.0006
-0.0005
-0.0028
0.0002

-0.0166 ]
-0.1032
0.0062
0.0008
1.6490 |

-0.0024]
0.0003
-0.0001
-0.0019
0.0644 |
-0.0040]
-0.0099
0.0023
-0.0039
1.2627

0.0085 |

-0.1544
0.0128
0.0308

0.9260 |
0.0002]

-0.0008
0.0001
0.0003

-0.0022 |

[ 2.2963

0.0194
,Q,=|-0.0933
-0.1429
| 0.0158
[ 1.4703
0.0032
\R.=|-0.0101
-0.0075
| 0.0040
[ 0.0408
-0.0003
,Rs=| -0.0001
-0.0004
-0.0003
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[-0.0021
0.0000
/X1, =| -0.0001
-0.0002
| 0.0001
[ 0.2688
0.0030
/X 2 =|-0.0137
-0.0224
| 0.0025

0.0194
2.5388
-0.0040
-0.0886
-0.1183

0.0032
1.8503
-0.0039
0.0017
0.0051

-0.0003

0.0693
-0.0003
-0.0002
-0.0004

-0.0002
-0.0016
-0.0000
-0.0004
-0.0001

0.0030

0.3164

0.0006
-0.0147
-0.0199

-0.0933
-0.0040
3.0592
-0.0633
0.0077

-0.0101
-0.0039
1.4255
0.0026
0.0005

-0.0001
-0.0003
0.0391
-0.0001
0.0000

-0.0004 0.0000 0.0001 |
-0.0000
-0.0008 -0.0001 0.0000 |,
0.0000
0.0000
-0.0137 -0.0224 0.0025 |
0.0006
0.3639 -0.0108 0.0015 |,
-0.0108 0.3400 0.0018
0.0015 0.0018 0.3514 |

-0.1429 0.0158 |
-0.0886 -0.1183
-0.0633 0.0077
2.6282 0.0103
0.0103 2.75437 |

-0.0075 0.0040]
0.0017 0.0051
0.0026 0.0005 |,
1.6924 0.0034
0.0034 1.8690 |

-0.0004 -0.0003]
-0.0002 -0.0004
-0.0001 0.0000 |,
0.0552 -0.0003
-0.0003 0.0706 |

-0.0003 -0.0005

-0.0016 0.0001
-0.0001 -0.0015 |

-0.0147 -0.0199




[ 0.0063
-0.0003
0.0001
-0.0002

-0.0002

[ 0.9886
-0.0160
0.0217
0.0109
-0.0119

-0.0013
-0.0000
0.0001
0.0001
-0.0000

0.0050
-0.0001
-0.0000
-0.0001
-0.0000
[ 2.3045
0.1737
-0.0078
0.1829
| 0.1802
[1.9558
0

Xas=

Yu=

Y=

Y=

A=

0
0
0

-0.0003 0.0001 -0.0002 -0.0002] [0.0370 -0.0014 0.0003
0.0051 0.0000 0.0002 0.0001 -0.0014 0.0309 0.0002
0.0000 0.0040 0.0001 -0.0000 |, X =| 0.0003 0.0002 0.0253
0.0002 0.0001 0.0052 -0.0002 -0.0018 0.0006 0.0005
0.0001 -0.0000 -0.0002 0.0051 |-0.0012 0.0001 -0.0001
0.0160 0.0217 00109 -0.0119]  [-0.0010 -0.0000 0.0000
0.9543 0.0157 -0.0145 -0.0311 0.0000 -0.0018 0.0000
0.0157 0.9454 -0.0137 0.0068 |,y,,=| 0.0000 0.0000 -0.0010
0.0145 -0.0137 1.0312 -0.0126 0.0000 -0.0000 -0.0000
00311 0.0068 -0.0126 0.9606| | 0.0000 -0.0000 0.0000
-0.0001 0.000L 0.0001 -0.0001] [ 0.0014 -0.0000 -0.0000
-0.0027 0.0001 -0.0001 -0.0002 -0.0000 0.0024 -0.0000
0.0001 -0.0014 -0.0001 0.0001 |y, =|-0.0000 -0.0000 0.0013
-0.0001 -0.0001 -0.0017 -0.0001 -0.0000 -0.0000 -0.0000
-0.0002 0.0000 -0.0001 -0.0027| |-0.0000 -0.0000 -0.0000
-0.0001 -0.0000 -0.0001 -0.0000] [ 0.0280 -0.0003 -0.0002
0.0091 -0.0001 -0.0000 -0.0000 -0.0003 0.0507 -0.0004
-0.0001 0.0048 0.0000 0.0000 |,Y=|-0.0002 -0.0004 0.0267
-0.0000 0.0000 0.0071 -0.0000 -0.0005 -0.0001 0.0000
-0.0000 0.0000 -0.0000 0.0094 | |-0.0002 -0.0003 0.0000
0.1737 -0.0078 0.1829 0.1802]  [0.3542 0 0
24622 02437 0.0002 -0.0138 0 04323 0
0.2437 2.1719 0.0007 0.0036 |,S = 0 0 03523
0.0002 0.0007 22224 0.1711 0 0 0 03
00138 00036 01711 19564| | 0 0 0

0 0 0 0 [0.0706 0 0
2.0052 0 0 o0 0 0082 0

0 1.8888 0 0 |A= 0 0 00699

0 0 19048 0 0o 0 0 0077

0 0 0 17987 | 0 0 0

£:=16.1286,5,=19.0746,5, = 23.9381,¢,=16.3011.

Example 3: Consider a genetic regulatory network (7) with the following parameters

{

%(t) = —AX(t) +WF (y(t—h))
y(t) = —Cy(t) + Dx(t - 7),

A =diag(3,3,3),C =diag(2.5,2.5,2.5), D = diag(0.8,0.8,0.8), K = diag(0.65,0.65,0.65),

where
0 0 -25
W=|-25 0 0 |,
0 -2.5 0
F)=F.®)=1,f(x)=—"—,
1+x

than 0.65, and assumption (9) is satisfied.
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-0.0018
0.0006
0.0005
0.0327
-0.0010

0.0000
-0.0000
-0.0000
-0.0014
-0.0000

-0.0000
-0.0000
-0.0000

0.0019
-0.0000

-0.0005
-0.0001
0.0000
0.0395
-0.0003
0
0
0
794

0 04119

0
0
0 0
2 0
0 0.087

0
0

that is, the Hill coefficient is 2. It is obvious that the derivative of f(x)

-0.0012]
0.0001
-0.0001 |,
-0.0010

0.0322

-0.0000 ]
-0.0000
0.0000 |,
-0.0000
-0.0019 |
-0.0000]
-0.0000
-0.0000 |,
-0.0000
0.0025
-0.0002]
-0.0003
0.0000 |,
-0.0003
0.0522

07
0
0
0

(36)

is less



Solution: Using Theorem 1, the MADB r and h for the system (36) can be calculated as
r=5.5467and h = 6.2368. Applying the criterion in [14], the system (36) is asymptotically stable for 7 and

h that satisfies 7=1.2 and h=1.7 respectively. Hence, for this example, the criteria proposed here
significantly improve the estimate of the stability limit compared for the result of [14].

5. Conclusions
In this paper, we have worked out some new stability criteria for uncertain genetic networks with time
delays by choosing an appropriate Lyapunov functional and employing integral inequality approach. A new
stability criterion has been presented to guarantee that genetic regulatory networks are robustly, asymptotically
stable, and the stability criterion has been given in terms of linear matrix inequality (LMI). Finally, three
numerical examples are presented to illustrate the effectiveness and the less conservativeness of the developed
results.
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