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Abstract 

The paper is to study the continuous time genetic regulatory networks to probe into the related issue of 

system asymptotically stable, due to the system be existence of interval time-varying delays and norm-bounded 

parameter uncertainty. Gene networks are being used increasingly as models to represent phenomena at the level 

of gene expression, how to construct models for analyzing the interaction between genes from experimental data 

is becoming important. In recent years researchers have proposed many methods to reconstruct gene regulatory 

networks based on gene expression data, such as clustering, Boolean networks, linear and non-linear model, 

Bayesian Networks and differential equation. For each gene category, we find its regulation patterns. By using 

the regulation patterns found for each gene category, we can infer the gene regulation relationships by finding 

the inclusive and opposite patterns between gene categories. Accordingly, these key genes can be admitted as the 

centers, and the whole network can further be decomposed into smaller ones, according to these centers. Finally, 

in order to optimize this decomposition, the boundaries among sub-networks can be determined, based on the 

mutual-information among sub-networks. So must to use Lyapunov–Krasovskii function, and delay-dependent 

stability is solved according to the skill of linear matrix inequalities. Simulation examples are to prove the 

validity and applicability for suggested result 

 

Keywords: Genetic regulatory networks, asymptotically stable, delay-dependent stability, linear matrix 
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1. Introduction 

A genetic regulatory network (GRN) is a nonlinear dynamical system which describes the highly complex 

interactions between mRNAs and proteins-two main genetic products produced in the transcriptional and 

translational processes. Genetic networks are biochemically dynamical systems, and it is natural to model 

genetic networks by using dynamical system models, which provide a powerful tool for studying gene regulation 

processes in living organisms. At present, GRN has become a new area of research in the fields of biological and 

biomedical sciences. Stability behavior of genetic regulatory networks has important biological implication and 

potential engineering application from both theoretical and experimental viewpoints [1, 2]. Therefore stability is 

a basic feature of genetic regulatory process. Many researchers have studied so far the stability of genetic 

regulatory networks by experiment, numerical simulation and theoretical analysis [2, 3, 5-8, 12-14]. 

On the other hand, there is no doubt that time delay play important role in dynamics of genetic networks, 

and theoretical models without consideration of these factors may even provide wrong results. To have the 

accurate results, time delay should be considered in the biological systems or artificial genetic networks due to 

the slow processes of transcription, translation, and translocation or the finite switching speed of amplifiers. 

However, the dynamics will be more complicated due to the incorporation of the time delay in the genetic 

networks. Recently, some researchers have paid attention to the issue concerning time delay stability analysis 

[5-8, 12-15]. In [5], the authors studied the stability of a general genetic network model with time delays by 

using local stability analysis and characteristic equation analysis. Although the method of characteristic equation 

analysis can provide an accurate local stability region, it is difficult to be verified, especially for large-scale 

genetic networks with time delays. By local stability analysis and characteristic equation, the authors have 

addressed the stability of a general GRNs model with time delays. In [7], the modelled GRNs with SUM 

regulatory functions and have proposed some stability criteria for GRNs with time delays and/or stochastic 

perturbations. In [8], the stability of GRNs with noise perturbations and time delays has been studied. The 

criteria in [7, 8] are obtained by LMIs and can be easily verified. To have the accurate predictions, time delay 

should be considered in the biological systems or artificial genetic networks due to the slow processes of 

transcription, translation and translocation or the finite switching speed of amplifiers; theoretical models without 

consideration delay may even provide wrong predictions [6, 12]. In [13], the authors investigated the robust 

asymptotical stability issues of the GRNs with time delays and norm bounded uncertainties. By choosing an 

appropriate new Lyapunov functional and employing some free-weighting matrices, [14] derived some less 

conservative delay dependent stability criteria. Besides, the proposed method is particularly useful when applied 
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to eukaryotic genetic networks. The numerical results show that the proposed criteria are valid, and are superior 

to some results in the existing literature. Furthermore, as mentioned in [13, 14], all the theoretical results can be 

used not only in the analysis and understanding of the biological mechanism of gene regulation in living 

organisms; but can also be applied to the design and modelling of synthetic gene circuits in the framework of the 

synthetic biology.Meanwhile, in the application and design of genetic networks, there are often some 

unavoidable uncertainties, such as modeling errors, external perturbations and parameters fluctuations. These 

uncertainties may cause the genetic networks unstable [15]. Thus, it is also of great importance to investigate the 

robust asymptotical stability. 

Based on the above discussion, the main purpose of this paper is to analyze the stability of genetic networks 

in the forms of differential equations. The stability analysis of the genetic networks are based on the Lyapunov 

method and integral inequality (LMI) approach, and the results are represented in terms of linear matrix 

inequalities (LMIs), which are easy to be verified by convex optimization techniques, e.g., the interior point 

method, and by software packages, e.g., the MATLAB LMI Toolbox. Numerical examples have also been used 

to demonstrate the usefulness of the main result. 

The rest of this paper is organized as follows. Preliminaries and assumptions are defined in section 2. In 

section 3 the main results of this paper for the uncertain genetic regulatory networks is established. Three 

examples are given in section 4 to show the effectiveness of the proposed method. Finally the paper is closed 

with the interpretation and discussion of the results. 

 

2. Model description and assumptions 

The differential equations for genetic regulatory networks with time delay can be described as [5] 
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where ( ), ( ) n

i i
t tpm R  are the concentrations of mRNA and protein of the ith node. In this network, there is 

one output and multiple inputs for a single node or gene. The degradation rates of mRNA and protein are 

denoted by ia and ,ic  respectively. id  is a constant, and as a monotonic increasing or decreasing regulatory 

function, we usually take ib as a Michaelis–Menten or Hill form [7]. Here, we take 
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  which is called SUM logic [16]. Thus each transcription factor acts 

additively to regulate the ith gene. 

If transcription factor j is an activator of gene i, then 
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which is a positive feedback loop. Then the system may tend to settle in one of two stable states. 

If transcription factor j is a repressor of gene i, then 

( ( ) / )1
( ( )) (1 )

1 ( ( ) / ) 1 ( ( ) / )

H

j

ij ij ijj H H

j j

tp
tpb

t tp p


 

 
  

 
                   (3) 

 

which is a negative feedback loop. Then the system may approach or oscillate around a single steady-state [1, 

11], where H is a Hill coefficient, parameter   is a positive constant and a bounded constant ij  is the 

dimensionless transcriptional rate of transcriptional factor j to gene i. 

Hence, (1) can be rewritten as 
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where ( ) ( / ) /[1 ( / ) ]H H

i
x x xg     is a monotonically increasing function, iB  is defined as a basal rate, 

,i j LB   ij  and iL  is a set of repressors of gene i. ( ) n n

ijW w R
  is a coupling matrix of the genetic 
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regulatory networks, which is defined as 

     if transcription factor is activator of gene  

0     if there is no link from gene  to                 

  if transcription factor  is repressor of gene

ij

ij

ij

 j i

j iw

j  i


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


 
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                         (5) 

 

In other words, the matrix ( )ijW w defines the coupling topology, direction and the transcriptional rate of the 

genetic regulatory network. 

In compact matrix form, (4) can be rewritten as 
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where  
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T
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      

 
 

It should be noted that, in model (4) and (6), iB is dependent on the biological function of transcription 

factor j on gene i, that is, iB  is determined by whether j acts as an activator or a repressor of gene i. Once gene 

i has one or more repressors, then ,iL the set of all j which are repressors of gene i, is a non-empty set and B is 

relevant to W. Thus, once W is uncertain, B is also uncertain. Therefore either for this case or when all 

transcription factors are repressors of gene i, the variable equilibrium point is an unknown function about the 

uncertainty, and these variable equilibrium points cannot be calculated because they are the solution of a 

parameter-dependent non-linear system. As biological networks, genetic regulatory networks are usually 

non-identical, so it is necessary to introduce estimation errors into the genetic network model, which makes the 

mathematical model uncertain. 

Let ( ,m


p

) be an equilibrium of Eq. (6). Then we shift an intended equilibrium point to the origin by 

letting ( ) ( ) , ( ) ( ) ,x t m t y t p t pm
     Hence, it is easy to get: 
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where 1 2 1 2
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 
     

Since 
i

g  is a monotonically increasing function with saturation, it satisfies, for all ,x y R with x y : 

 

        
( ) ( )

0 i i

i

g x - g y
k

x - y
                                             (8) 

 

From the relationship between ( )f   and ( ),g   we know that ( )f  satisfies the sector condition: 

 

 
( )
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i i

f x
k x i nf

x
                         (9) 

which is equivalent to the following one: 

 

( )( ( ) ) 0,    (0) 0, 0, 1,2,..., .ii i i
x x x x i nf f fk                       (10) 

 

Next, we consider the following genetic regulatory network of N time-coupled non-identical nodes with 

parameter uncertainties. 
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where ( )A t , Δ ( ),W t  Δ ( ),C t  and Δ ( )D t  are unknown matrices representing time-varying parameter 

uncertainties, which are assumed to be of the form 

 

1 2 3 4[Δ ( ) Δ ( ) Δ ( ) Δ ( )] ( )[ ]A t W t C t D t MF k N N N N ,             (12) 

 

where 1 2 3, , , ,M N N N  and 4N are known real constant matrices and ( )F t is an unknown matrix function with 

Lebesgue- measurable elements bounded by  

 

( ) ( ) ,                            ,T t F t I tF                              (13) 

 

where I is an appropriately dimensioned identity matrix. 
The following lemmas will be used to prove the main results: 

 

Lemma 1 [9, 10]. For any positive semi-definite matrices 
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0,T

T T

X X X
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 
 

 
 
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                                    (14a) 

 

the following integral inequality holds  
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( ) ( ( )) ( ) ( ( )) .                          (14b)

0 ( )
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t h t
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s x s dsx X

x tX X X

t t h t s x t h t dsx x x X X X

x sX X




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   
   
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Lemma 2 [4]. The following matrix inequality 

 

     
( ) ( )

0,
( ) ( )T

Q x S x

x R xS

 
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 
                                        (15a) 

 

where ( ) ( ), ( ) ( ) and ( )
T TQ x x R x x S xQ R   depend affine on ,x is equivalent to 

 

    ( ) 0 ,R x                                        (15b) 

( ) 0,Q x                                       (15c) 

and  
1( ) ( ) ( ) ( ) 0.TQ x S x x xSR
                                      (15d) 

 

Finally, the following Lemma 3 will be used to handle the parametrical perturbation. 

 

Lemma 3 [4].Given symmetric matrices  and ,D E of appropriate dimensions, 

 

    ( ) ( ) 0 ,T T TD F t E tE F D                                 (16a) 

 

for all ( )F t  satisfying ( ) ( ) ,T t F t IF   if and only if there exists some 0   such that 
1 0,T TD ED E 
                                   (16b) 

 

3. Main results 

In this section, we use the integral inequality approach (IIA) to obtain stability criterion for a genetic 

regulatory networks with time delay (7). Based on the Lyapunov-Krasovskii stability theorem and integral 

inequality approach (IIA), the following result is obtained. 
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Theorem 1. For given positive scalars h  and , the genetic regulatory networks with time delay (7) is 

asymptotically stable if there exist symmetry positive-definite matrices 0, 0,( 1,2,3),
T T

i ii i
iQ Q R R      

0,TU U  diagonal matrices 0,S   1 0, 2 0, and 
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  
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11 13 14 17
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    
 
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                            (17a)  
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333
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X
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            
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, , .

TT

T

h U K UQWD R
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
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         

 

 

Proof: Choose the following Lyapunov-Kravoskii functional candidate to be 
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Then, taking the time derivative of ( )V t  with respect to t  along the system (18) yield 
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2 23 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                               (22)

T TT Tt t x t t x t t y t t h y t hQ Q y yx x R RV           
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


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 
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Using Lemma 1, the term 33( ) ( )
t T

t
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 

  

   
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 
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  

   
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  Similarly, we have 
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Evaluating 33
( ) ( ) ( ) ( )

TT t x t t h y tQ yx R   along solution to (7), gives as follows:  
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[ ( ) ( ( ))] ( )[ ( ) ( ( ))]

[ ( ) ( )] ( )[ ( ) ( )]                                                           (26)

TT

T

T

t x t t h y tQ yx R

Ax t Wf y t h Ax t Wf y t hQ

Cy t Dx t h Cy t Dx tR





 



      

      

 

 

From (10) for appropriately dimensioned diagonal matrices ( 1,2),i i  we have 

 

   12 ( ( ) ) [ ( ( ) ) ( ) ] 0 ,
T

y t f y t K y tf                               (27) 

and 

22 ( ( )) [ ( ( )) ( )] 0.
T

y t h f y t h Ky t hf                                 (28) 

 
Substituting the above equations (20)-(28) into (19), we obtain 

 

33 3 333
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ,

t t TT T

t t h
V t t t s x s ds s y s dsQ yx X R Y


 

                  (29) 

 

where ( ) ( ) ( ) ( ) ( ( )) ( ( )) ( )
T T T TT T Tt t t t y t h y t t hy f f yx x         and 

11 13 14

22 23 25 26

13 23 33 34 35

14 34 44 46

25 35 55

26 46 66

0 0 0

0 0

0
0,

0 0

0 0 0

0 0 0

T T

T T

T T

T T

   
 

    
     

   
    
   
 
    

 with 
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11 11 13 131 2 1 1 2 3
{ , ,..., }, ,T T T

nK diag A AQ Q Q Qk k k A X X X A           

13 12 13 23 14 1 3

22 1 1 2 11 13 13 3

23 1 3 25 1 26 12 13 23

33 22 23 23 3 352

44 2 46 2 55 1 66 22 233

, ,

,

, , ,

, ,

2 , , 2 ,

T T

T TT

T T T

T T T

T

W WQ QX X X A

C h h CC CR R R Y Y Y R

D h D K S hC CR R Y X Y

h D SQ X X X D R D

U W K U hQW Y

 





     

       

         

       

               23 2.
T

Y Y R 

 

 

Finally, using the Schur complements of Lemma 2, with some effort we can show that (29) guarantees of 
2

( ) ( )V t x t   for a sufficiently small 0.   It is clear that if 0,   333
0,  Q X   and 3 33 0.R Y   

Furthermore, (17) implies 0,  which is equivalent to (29). Therefore, if LMIs (17) are feasible, the system 

(7) is asymptotically stable. This completes the proof.  

Based on Theorem 1, we have the following result for uncertain genetic regulatory network with time delay 

(11). 

 

Theorem 2. For given positive scalars h  and ,  the genetic regulatory networks with time delay (11) is 

asymptotically stable if there exist symmetry positive-definite matrices 0, 0,( 1,2,3),
T T

i ii i
iQ Q R R      

0,TU U  diagonal matrices 0,S   1 0, 2 0, 0,  and 

11 12 13

12 22 23

13 23 33

0,T

T T

X X X

X X X X

X X X

 
 

 
 
  

  

1 1 1 2 1 3

1 2 2 2 2 3

1 3 2 3 3 3

0,T

T T

Y Y Y

Y Y Y Y

Y Y Y

 
 

 
 
  

such that the following LMIs hold for  

 

13 14 17 19 11011

23 25 26 28 211 21222

13 23 35 3833

14 46 4744

25 35 55 511 512

26 46 66

17 47 77 79 710

28 38 88 811 812

19

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

T T

T

T T

T T

T T

T T

T

    

     

   

  

    

  
 

    

    

79 99

110 710 1010

211 511 811 1111

212 512 812 1212

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

T T

T T T

T T T

 
 
 
 
 
 
 
 
 

 
 
 
 
   
   
 

    
     

          (30a) 

and 

333

3 33

  0,                  (30b)Q

   0,                  (30c)R

X

Y

 

 
 

where  

11 22 33 44 19 1 110 21 1 1 3 3 3 4 4 4 2 2 2 1 111 22 33 44

211 1 3 212 1 4 511 3 511 4 79 1 710 2 811 3 33 3

, , , , , ,

, , , , , , ,

T T T T Q QN N N N N N N N M M

S S hQ QR M R M M M M M R M

   

 

                 

               

812 3 4 99 1010 1111 12121 2 3 4, , , , . , ( , 1,...,8; 8) are defined in (17).ijh I I I I i j i jR M                       

 

It is, incidentally, worth noting that the uncertain genetic regulatory network with time (11) is asymptotically 

stable, that is, the uncertain parts of the nominal system can be tolerated within allowable time delay  .h  

 

Proof: Replacing , , ,A W C and D  in (17) with 1 1 2 2( ) , ( ) ,A F t W F t NM M M   3 3( ) ,C F t NM and 

4 4( ) ,D F t NM  respectively, we apply Lemma 2 for system (17) is equivalent to the following condition: 
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1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4( ) ( ) + ( ) ( ) ( ) ( ) + ( ) ( )  <0 

                                                                                                   

T T T T T T T T
d e e d d e e d d e e d d e e dF t F t F t F t F t F t F t F t                    

                                                                       (31)
      

where 

 

 

   

   

1 1 1 1 11 3

2 2 2 2 21 3

3 1 3 3 3 3 3 4

4 1 4 4 3 4 4 4

0 0 0 0 0 0 , 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 , 0 0 0 0 0 0 0 ,

0 0 0 0 0 , 0 0 0 0 0 0 0 ,

0 0 0 0 0 , 0 0 0 0 0 0 0 .

T

d e

T

d e

T

d e

T

d e

Q Q NM M

Q Q NM M

S h NR M M R M

S h NR M M R M





      

     

   

   

 

 

    According to Lemma 3, (31) is true if there exist a scalar 0( 1,2,3,4)i i    such that the following 

inequality holds 

 
1 1 1 1

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 41 1 2 2 3 3 4 4 0.                      (32)T T T T T T T T
d d e e d d e e d d e e d d e e       

                            

 

Applying the Schur complement shows that (32) is equivalent to (30a). This completes the proof. 

Base on that, a convex optimization problem is formulated to find the bound on the allowable delay time 

h and   which maintains the genetic regulatory network time delay with parameter uncertainties systems (11). 

 

Remark 2. It is interesting to note that h and  appear linearly in (17) and (30). Thus a generalized eigenvalue 

problem (GEVP) as defined in Boyd, et al. [4] can be formulated to solve the minimum acceptable 

1/  (or 1/ )h  and therefore the maximum  (or )h   to maintain robust stability as judged by these conditions. 

In this way, our optimization problem becomes a standard generalized eigrnvalue problem, then which can be 

solved using GEVP technique. From this discussion, we have the following Remark 2. 

 

Remark 2: Theorem 2 provides delay-dependent robust asymptotic stability criterion for the genetic regulatory 

network time delay with parameter uncertainties systems (11) in terms of solvability of LMIs [4]. Based on them, 

we can obtain the maximum allowable delay bound (MADB) ( or )h   such that (11) is stable by solving the 

following convex optimization problem 

 

Maximize                 (or  )                                                                                        

Subject    to            (30)                                                  

h 

                                     (33)





 
 

Inequality (33) is a convex optimization problem and can be obtained efficiently using the MATLAB LMI 

Toolbox. 

 

4. Examples 

Example 1: Consider an uncertain genetic regulatory network (11) with the following parameters 

 

( ) ( ( )) ( ) ( ( )) ( ( ))             

( ) ( ( )) ( ) ( ( )) ( ),                  

x t A A t x t W W t f y t h

y t C C t y t D D t x t 

     


     
                  (34) 

where 

 

1 2

(1,1,1), (1,1,1), (0.3,0.2,0.4), (0.65,0.65,0.65),

0 1 1 0.04 0.01 0.02 0.2     0          0

1 0 0 , 0.01 0.04 0.01 , 0         0.2      0

0 1 0 0.02 0.01 0.03 0      

A diag C diag D diag K diag

W M M

   

     
   

    
   
       

3 4 11 2

,

   0         0.2

 0.4    0.1   -0.2  0.040    0.02   -0.04

 0.1    0.4   -0.1 ,  0.020    0.03   -0.02 , , (0.2,0.2,0.2

-0.2   -0.1    0.3 -0.040   -0.02    0.06

diagN NM M M

 
 
 
  

   
   

   
   
      

   3 43 4

1 3

),

, , 2 1 0 , 0.08 0.04 0 ,

( ) (sin( ),cos(2 ), sin( )), ( ) ( 0.01sin( ), 0.01cos(2 ), 0.01sin( )),

T T

B BN NM M

t diag t t t t diag t t tF F

    

     
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2

2 4 2
( ) ( ) , ( ) ,

1

x
t t I f xF F

x
  


that is, the Hill coefficient is 2. It is obvious that the derivative of ( )f x  is less 

than 0.65, and assumption (9) is satisfied.  

 

Solution: Using Theorem 2, the MADB   and  h for the system (34) to be asymptotically stable are 

5.8895,  and 6.4654.h   Applying the criterion in [13], the system is asymptotically stable for   and  h  

that satisfies 0.2  and 0.3,h   respectively. Hence, for this example, the criteria proposed here significantly 

improve the estimate of the stability limit compared for the result of [13].In case of 5.8895,  6.4654,h   by 

using the MATLAB LMI toolbox, we can easily obtain the following feasible solutions of LMIs (30) in terms of 

Theorem 2.  

 

1 2 3

24.1477     0.4063    7.3111 18.0469    0.4554     6.5921 3

  0.4063   25.9010   -0.1794 ,   0.4554   18.5387    1.5321 ,

  7.3111   -0.1794   35.2756   6.5921    1.5321   29.5817

Q Q Q

   
   

  
   
      

1 2

.1722    0.0414    0.0439

0.0414    3.1751   -0.4772 ,

0.0439   -0.4772    3.3921

29.1748   -1.2044    4.2439  5.5993   -1.0

-1.2044   36.0465    1.0496 ,

 4.2439    1.0496   28.5873

R R

 
 
 
  

 
 

 
 
  

3

11

400    2.1852 2.4865    0.0030    0.4955

-1.0400    7.7781    0.8754 , 0.0030    3.8168    0.1010 ,

 2.1852    0.8754    6.0608  0.4955    0.1010    2.3132

0.8000    0.0285    0.665

R

X

   
   


   
      

 12 13

9 -0.0727    0.0001    0.0212 -0.2771   -0.0075    0.0185

0.0285    0.9915    0.1126 ,  0.0185   -0.0661    0.0115 , -0.0060  

0.6659    0.1126    1.5381 -0.0017   -0.0115   -0.0624

X X

   
   

 
   
      

22 23

 -0.2648    0.0452 ,

 0.0183    0.0442   -0.2742

0.6849    0.0034    0.4510  0.2792    0.0078   -0.0150

0.0034    0.9369    0.0604 ,  0.0061    0.2657   

0.4510    0.0604    1.1611

X X

 
 
 
  

 
 

 
 
  

33

 1.7163    0.0378   -0.0386

-0.0449 ,  0.0378    1.6597   -0.2699 ,

-0.0141   -0.0439    0.2810 -0.0386   -0.2699    1.7803

X

   
   


   
      

 

11 12 13

 1.4205   -0.3446    0.7114 -0.0661    0.0012   -0.0120 -0.2

-0.3446    2.1812    0.2834 ,  0.0006   -0.1028   -0.0027 ,

 0.7114    0.2834    1.5612 -0.0135   -0.0040   -0.0611

Y Y Y

   
   

  
   
      

22 23

611   -0.0108   -0.0411

-0.0066   -0.3901   -0.0081 ,

-0.0392   -0.0038   -0.2370

 0.0652   -0.0001    0.0134 0.2884    0.

-0.0001    0.0998    0.0024 ,

 0.0134    0.0024    0.0606

Y Y

 
 
 
  

 
 

 
 
  

33

0016    0.0578 1.8715    0.0101    0.3758

0.0016    0.4502    0.0133 , 0.0101    2.9252    0.0870 ,

0.0578    0.0134    0.2651 0.3758    0.0870    1.7202

34.0247   -2.1175    3.2784

-

Y

U

   
   


   
      

 1

19.3547            0           0 25.8591             0  

2.1175   51.8903    9.0948 ,          0   25.0042           0 ,

 3.2784    9.0948   33.9774          0             0   20.942

S

   
   

    
      

2

           0

          0   36.5520             0 ,

          0              0   27.0943

1.1653             0             0

         0    1.5273             0

         0             0    1.1798

 
 
 
  



 1 2 3 4, 16.1286, 19.0746,  23.9381, 16.3011.   


 

   
 
  

 

 

Example 2: In this example, we consider a five-node genetic regulatory network in order to show how to test 

our theoretical results in detail. In Fig. 1, each ellipse represents a node, and the lines represent regulatory links, 

in which  denotes activation. According to the definition of links in Section 2, we can obtain the coupling 

matrix of this genetic regulatory network as follows 

 

( ) ( ( )) ( ) ( ( )) ( ( ))             

( ) ( ( )) ( ) ( ( )) ( ),                  

x t A A t x t W W t f y t h

y t C C t y t D D t x t 

     


     
                         (35) 

where 

(3,4,5,4,4), (5,4,5,4.5,4), (0.3,0.2,0.4,0.2,0.2),

(0.65,0.65,0.65,0.65,0.65),

A diag C diag D diag

K diag

  


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1

0     1     1     0     0  0.04    0.01   -0.02   -0.01    0.01

1     0     0     1     1  0.01    0.04   

0     1     0     0     0 ,

1     1     0     0     0

0     0     0     1     0

W M

 
 
 
  
 
 
 
 

2

0      0.2   0.2   0     0

-0.01    0.01    0.02 0.2   0      0    

-0.02   -0.01    0.03    0.01         0 ,

-0.01    0.01    0.01    0.04    0.01

 0.01    0.02         0    0.01    0.04

M

 
 
 
  
 
 
 
 

3

 0.2   0.2

0     -0.2   0     0     0 ,

0.2   0.2   0     0     0

0      0      0     0.2   0

 0.4    0.1   -0.2   -0.1    0.1

 0.1    0.4   -0.1    0.1    0.2

-0.2   -0.1    0.3    0.1   M

 
 
 
 
 
 
 
 

 4

 0.04    0.02   -0.04   -0.02   0.02

 0.02    0.03   -0.02    0.02    0.04

 0 , -0.04   -0.02    0.06    0.02    0

-0.1    0.1    0.1    0.4    0.1 -0.02 

 0.1    0.2    0       0.1    0.4

M

 
 
 
  
 
 
 
 

2

1 3 4 11 2 3 4

3

,

   0.02    0.02    0.02    0.02

 0.02    0.04    0         0.02    0.02

, (0.2,0.2,0.2,0.2,0.2), , , 0, ( ) (sin( ),cos(2 ),cos( ),cos( ), sin( )),

( ) (

diag B t diag t t t tN N N N tM M M F

t diagF

 
 
 
 
 
 
 
 

      

 0.01sin( ), 0.01cos(2 ), 0.01cos( ), 0.01cos( ) / 2, 0.01sin( )),t t t t t   

 
2

2 4 2
( ) ( ) , ( ) ,

1

x
t t I f xF F

x
  


that is, the Hill coefficient is 2. It is obvious that the derivative of ( )f x  is less 

than 0.65, and assumption (9) is satisfied.  

 

Solution: The MADB  and h  that guarantee the system (35) to be asymptotically stable are calculated to be 

2, 3h    in [13], which is 4.6665,  5.5435,h   by using Theorem 2 in this paper. It is seen that our 

results improve the existing results [13]. In case of 4.6665,  5.5435,h   solving Theorem 2 yields the 

following set of feasible solutions 

1

 1.5001   -0.0105   -0.0727   -0.1414   -0.0166

-0.0105    1.4413    0.0094   -0.0675   -0.1032

-0.0727    0.0094    1.5978   -0.0523    0.0062

-0.1414   -0.0675   -0.0523    1.5754    0.0008

-0.0166  

Q 
2

 2.2963    0.0194   -0.0933   -0.1429    0.0158

 0.0194    2.5388   -0.0040   -0.0886   -0.1183

, -0.0933   -0.0040    3.0592   -0.0633    0.0077

-

 -0.1032    0.0062    0.0008    1.6490

Q

 
 
 
  
 
 
 
 

,

0.1429   -0.0886   -0.0633    2.6282    0.0103

 0.0158   -0.1183    0.0077    0.0103    2.75437

 
 
 
 
 
 
 
 

 

3

 0.0737   -0.0028    0.0006   -0.0037   -0.0024

-0.0028    0.0618    0.0005    0.0012    0.0003

 0.0006    0.0005    0.0506    0.0010   -0.0001

-0.0037    0.0012    0.0010    0.0654   -0.0019

-0.0024  

Q  1

 1.4703    0.0032   -0.0101   -0.0075    0.0040

 0.0032    1.8503   -0.0039    0.0017    0.0051

, -0.0101   -0.0039    1.4255    0.0026    0.0005

-

  0.0003   -0.0001   -0.0019    0.0644

R

 
 
 
  
 
 
 
 

2

,

0.0075    0.0017    0.0026    1.6924    0.0034

 0.0040    0.0051    0.0005    0.0034    1.8690

 1.2730   -0.0054    0.0076    0.0035   -0.0040

-0.0054    1.2607    0.0052   -0.0044   

R

 
 
 
 
 
 
 
 

 3

 0.0408   -0.0003   -0.0001   -0

-0.0099

 0.0076    0.0052    1.2604   -0.0045    0.0023 ,

 0.0035   -0.0044   -0.0045    1.2841   -0.0039

-0.0040   -0.0099    0.0023   -0.0039    1.2627

R

 
 
 
  
 
 
 
 

.0004   -0.0003

-0.0003    0.0693   -0.0003   -0.0002   -0.0004

-0.0001   -0.0003    0.0391   -0.0001    0.0000

-0.0004   -0.0002   -0.0001    0.0552   -0.0003

-0.0003   -0.0004    0.0000   -0.0003    0.0

11

,

706

 0.4503    0.0240   -0.0943   -0.1173    0.0085

 0.0240    0.6672    0.0085   -0.1083   -0.1544

-0.0943    0.0085    1.2161   -0.1033    0.0128

-0.1173   -0.1083   -0.1033    0.81

X

 
 
 
 
 
 
 
 

 12

-0.0021   -0.0002   -0.0004    0.0000    0.0001

 0.0000   -0.0016   -0.0000   -0.0003   -0.0005

, -0.0001   -0.0000   -0.000

61    0.0308

 0.0085   -0.1544    0.0128    0.0308    0.9260

X

 
 
 
  
 
 
 
 

13

8   -0.0001    0.0000 ,

-0.0002   -0.0004    0.0000   -0.0016    0.0001

 0.0001   -0.0001    0.0000   -0.0001   -0.0015

-0.0053    0.0003   -0.0004   -0.0003    0.0002

 0.0004   -0.0034

X

 
 
 
 
 
 
 
 

 22

 0.2688 

    0.0000   -0.0006   -0.0008

-0.0005    0.0000   -0.0006   -0.0005    0.0001 ,

-0.0005   -0.0006   -0.0005   -0.0028    0.0003

 0.0002   -0.0008    0.0001    0.0002   -0.0022

X

 
 
 
  
 
 
 
 

   0.0030   -0.0137   -0.0224    0.0025

 0.0030    0.3164    0.0006   -0.0147   -0.0199

-0.0137    0.0006    0.3639   -0.0108    0.0015

-0.0224   -0.0147   -0.0108    0.3400    0.0018

 0.0025   -0.0199   

,

 0.0015    0.0018    0.3514

 
 
 
 
 
 
 
 
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23

 0.0063   -0.0003    0.0001   -0.0002   -0.0002

-0.0003    0.0051    0.0000    0.0002    0.0001

 0.0001    0.0000    0.0040    0.0001   -0.0000

-0.0002    0.0002    0.0001    0.0052   -0.0002

-0.0002 

X  33

 0.0370   -0.0014    0.0003   -0.0018   -0.0012

-0.0014    0.0309    0.0002    0.0006    0.0001

,  0.0003    0.0002    0.0253    0.0005   -0.000

   0.0001   -0.0000   -0.0002    0.0051

X

 
 
 
  
 
 
 
 

11

1 ,

-0.0018    0.0006    0.0005    0.0327   -0.0010

-0.0012    0.0001   -0.0001   -0.0010    0.0322

 0.9886   -0.0160    0.0217    0.0109   -0.0119

-0.0160    0.9543    0.0157   -0.0145

Y

 
 
 
 
 
 
 
 

 12

-0.0010   -0.0000    0.0000 

   -0.0311

 0.0217    0.0157    0.9454   -0.0137    0.0068 ,

 0.0109   -0.0145   -0.0137    1.0312   -0.0126

-0.0119   -0.0311    0.0068   -0.0126    0.9606

Y

 
 
 
  
 
 
 
 

   0.0000   -0.0000

 0.0000   -0.0018    0.0000   -0.0000   -0.0000

 0.0000    0.0000   -0.0010   -0.0000    0.0000

 0.0000   -0.0000   -0.0000   -0.0014   -0.0000

 0.0000   -0.0000    0.0000   -0.0000   

13

,

-0.0019

-0.0013   -0.0001    0.0001    0.0001   -0.0001

-0.0000   -0.0027    0.0001   -0.0001   -0.0002

 0.0001    0.0001   -0.0014   -0.0001    0.0001

 0.0001   -0.0001   -0.0001   -

Y

 
 
 
 
 
 
 
 

 22

 0.0014   -0.0000   -0.0000   -0.0000   -0.0000

-0.0000    0.0024   -0.0000   -0.0000   -0.0000

, -0.0000   -0.0000    0

0.0017   -0.0001

-0.0000   -0.0002    0.0000   -0.0001   -0.0027

Y

 
 
 
  
 
 
 
 

23

.0013   -0.0000   -0.0000 ,

-0.0000   -0.0000   -0.0000    0.0019   -0.0000

-0.0000   -0.0000   -0.0000   -0.0000    0.0025

 0.0050   -0.0001   -0.0000   -0.0001   -0.0000

-0.0001    0.

Y

 
 
 
 
 
 
 
 

 33

 0.0

0091   -0.0001   -0.0000   -0.0000

-0.0000   -0.0001    0.0048    0.0000    0.0000 ,

-0.0001   -0.0000    0.0000    0.0071   -0.0000

-0.0000   -0.0000    0.0000   -0.0000    0.0094

Y

 
 
 
  
 
 
 
 

280   -0.0003   -0.0002   -0.0005   -0.0002

-0.0003    0.0507   -0.0004   -0.0001   -0.0003

-0.0002   -0.0004    0.0267    0.0000    0.0000

-0.0005   -0.0001    0.0000    0.0395   -0.0003

-0.0002   -0.000

,

3    0.0000   -0.0003    0.0522

 2.3045    0.1737   -0.0078    0.1829    0.1802

 0.1737    2.4622    0.2437    0.0002   -0.0138

-0.0078    0.2437    2.1719    0.0007    0.0036

 0.1829  

U

 
 
 
 
 
 
 
 



0.3542            0             0             0             0

         0    0.4323            0  

,

  0.0002    0.0007    2.2224    0.1711

 0.1802   -0.0138    0.0036    0.1711    1.9564

S

 
 
 
  
 
 
 
 

           0             0

         0            0    0.3523             0             0

         0           0              0    0.3794             0

         0           0              0             0 

1

,

   0.4119

1.9558             0             0             0         0

         0    2.0052             0            0         0

         0             0    1.8888            0         

 
 
 
 
 
 
 
 

 2

0.0706            0         0             0           0

      

0 ,

         0             0            0    1.9048         0

         0            0             0             0    1.7987

 
 
 
  
 
 
 
 

   0    0.0822         0            0           0

         0         0    0.0699            0           0

         0         0            0    0.0772           0

         0         0            0        

1 2 3 4

,

     0    0.087

16.1286, 19.0746,  23.9381, 16.3011.   

 
 
 
 
 
 
 
 

   

 

 
 
 
Example 3: Consider a genetic regulatory network (7) with the following parameters 

 

( ) ( ) ( ( ))             

( ) ( ) ( ),                  

x t Ax t Wf y t h

y t Cy t Dx t 

   


   
                                      (36) 

where 

(3,3,3), (2.5,2.5,2.5), (0.8,0.8,0.8), (0.65,0.65,0.65),

0 0 2.5

2.5 0 0 ,

0 2.5 0

A diag C diag D diag K diag

W

   

 
 

 
 
  

2

2 4 2
( ) ( ) , ( ) ,

1

x
t t I f xF F

x
  


that is, the Hill coefficient is 2. It is obvious that the derivative of ( )f x  is less 

than 0.65, and assumption (9) is satisfied. 
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Solution: Using Theorem 1, the MADB   and  h for the system (36) can be calculated as 

5.5467  and 6.2368.h   Applying the criterion in [14], the system (36) is asymptotically stable for   and 

 h  that satisfies 1.2   and 1.7h   respectively. Hence, for this example, the criteria proposed here 

significantly improve the estimate of the stability limit compared for the result of [14]. 

 
5. Conclusions 

In this paper, we have worked out some new stability criteria for uncertain genetic networks with time 

delays by choosing an appropriate Lyapunov functional and employing integral inequality approach. A new 

stability criterion has been presented to guarantee that genetic regulatory networks are robustly, asymptotically 

stable, and the stability criterion has been given in terms of linear matrix inequality (LMI). Finally, three 

numerical examples are presented to illustrate the effectiveness and the less conservativeness of the developed 

results. 
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                Figure 1 Genetic regulatory network model ( : activation) 
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具區間時變延遲基因調節網路強健穩定度分析 

 
劉柄麟 

建國科技大學自動化暨機電光系統研究所 

lpl@ctu.edu.tw 

 
本論文主要藉由連續時間的基因調控網路，探討時延系統漸進穩定的相關問題。基因網路是一種描

述基因表達水準現象的模型，從實驗資料來構建模型的研究越來越普遍。近幾年來相繼提出了幾種基於

基因表達資料構建基因調節網路的方法，其中包括聚類技術、布林型網路、線性非線性模型、貝葉斯網

路模型和微分模型方程等。對於每個基因群，我們尋找基因群內的調節樣式。然後由這些調節樣式，我

們尋找基因群和基因群之間包含與相反的調節樣式，以推論基因群之間的調節關係，並建立基因群之間

的調節網路。實驗結果顯示我們所提出的方法具有效率性與擴充性，可以讓我們從一個全觀的角度去瞭

解基因調節網路。通過對模型的標準化分析，找出關鍵節點，以各關鍵節點為中心，對網路劃分，通過

計運算元網絡間交互資訊，確定各子網絡邊界，以達到對網路的最佳分解。由於系統具有間隔時變延遲

和範數有界參數之不確定性，因此必須利用 Lyapunov- Krasovskii 函數與延遲相依穩定性，再根據線性矩

陣不等式的技巧，解決此問題。模擬實例證明提出方法之有效性與適應性。 

關鍵字: 基因調控網絡，漸進穩定，延遲相依，線性矩陣不等式。 

 


